Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 16(4): e20316, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36890704

RESUMO

The growth and development of plants are the result of the interplay between the internal developmental programming and plant-environment interactions. Gene expression regulations in plants are made up of multi-level networks. In the past few years, many studies were carried out on co- and post-transcriptional RNA modifications, which, together with the RNA community, are collectively known as the "epitranscriptome." The epitranscriptomic machineries were identified and their functional impacts characterized in a broad range of physiological processes in diverse plant species. There is mounting evidence to suggest that the epitranscriptome provides an additional layer in the gene regulatory network for plant development and stress responses. In the present review, we summarized the epitranscriptomic modifications found so far in plants, including chemical modifications, RNA editing, and transcript isoforms. The various approaches to RNA modification detection were described, with special emphasis on the recent development and application potential of third-generation sequencing. The roles of epitranscriptomic changes in gene regulation during plant-environment interactions were discussed in case studies. This review aims to highlight the importance of epitranscriptomics in the study of gene regulatory networks in plants and to encourage multi-omics investigations using the recent technical advancements.


Assuntos
Regulação da Expressão Gênica , Transcriptoma , RNA/química , Processamento Pós-Transcricional do RNA , Redes Reguladoras de Genes
2.
Membranes (Basel) ; 12(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557168

RESUMO

The membranes of plant cells are dynamic structures composed of phospholipids and proteins. Proteins harboring phospholipid-binding domains or lipid ligands can localize to membranes. Stress perception can alter the subcellular localization of these proteins dynamically, causing them to either associate with or detach from membranes. The mechanisms behind the re-localization involve changes in the lipidation state of the proteins and interactions with membrane-associated biomolecules. The functional significance of such re-localization includes the regulation of molecular transport, cell integrity, protein folding, signaling, and gene expression. In this review, proteins that re-localize to or away from membranes upon abiotic and biotic stresses will be discussed in terms of the mechanisms involved and the functional significance of their re-localization. Knowledge of the re-localization mechanisms will facilitate research on increasing plant stress adaptability, while the study on re-localization of proteins upon stresses will further our understanding of stress adaptation strategies in plants.

3.
Front Mol Biosci ; 9: 1061350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533075

RESUMO

AtYchF1 is an unconventional G-protein in Arabidopsis thaliana that exhibits relaxed nucleotide-binding specificity. The bindings between AtYchF1 and biomolecules including GTP, ATP, and 26S rRNA have been reported. In this study, we demonstrated the binding of AtYchF1 to ppGpp in addition to the above molecules. AtYchF1 is a cytosolic protein previously reported as a negative regulator of both biotic and abiotic stresses while the accumulation of ppGpp in the cytoplasm induces retarded plant growth and development. By co-crystallization, in vitro pull-down experiments, and hydrolytic biochemical assays, we demonstrated the binding and hydrolysis of ppGpp by AtYchF1. ppGpp inhibits the binding of AtYchF1 to ATP, GTP, and 26S rRNA. The ppGpp hydrolyzing activity of AtYchF1 failed to be activated by AtGAP1. The AtYchF1-ppGpp co-crystal structure suggests that ppGpp might prevent His136 from executing nucleotide hydrolysis. In addition, upon the binding of ppGpp, the conformation between the TGS and helical domains of AtYchF1 changes. Such structural changes probably influence the binding between AtYchF1 and other molecules such as 26S rRNA. Since YchF proteins are conserved among different kingdoms of life, the findings advance the knowledge on the role of AtYchF1 in regulating nucleotide signaling as well as hint at the possible involvement of YchF proteins in regulating ppGpp level in other species.

4.
Front Plant Sci ; 13: 1001920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247637

RESUMO

Arabidopsis thaliana has been used regularly as a model plant in gene expression studies on transcriptional reprogramming upon pathogen infection, such as that by Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), or when subjected to stress hormone treatments including jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been extensively employed to quantitate these gene expression changes. However, the accuracy of the quantitation is largely dependent on the stability of the expressions of reference genes used for normalization. Recently, RNA sequencing (RNA-seq) has been widely used to mine stably expressed genes for use as references in RT-qPCR. However, the amplification step in RNA-seq creates an intrinsic bias against those genes with relatively low expression levels, and therefore does not provide an accurate quantification of all expressed genes. In this study, we employed mass spectrometry-based label-free quantification (LFQ) in proteomic analyses to identify those proteins with abundances unaffected by Pst DC3000 infection. We verified, using RT-qPCR, that the levels of their corresponding mRNAs were also unaffected by Pst DC3000 infection. Compared to commonly used reference genes for expression studies in A. thaliana upon Pst DC3000 infection, the candidate reference genes reported in this study generally have a higher expression stability. In addition, using RT-qPCR, we verified that the mRNAs of the candidate reference genes were stably expressed upon stress hormone treatments including JA, SA, and ABA. Results indicated that the candidate genes identified here had stable expressions upon these stresses and are suitable to be used as reference genes for RT-qPCR. Among the 18 candidate reference genes reported in this study, many of them had greater expression stability than the commonly used reference genes, such as ACT7, in previous studies. Here, besides proposing more appropriate reference genes for Arabidopsis expression studies, we also demonstrated the capacity of mass spectrometry-based LFQ to quantify protein abundance and the possibility to extend protein expression studies to the transcript level.

5.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886893

RESUMO

GTP is an important signaling molecule involved in the growth, development, and stress adaptability of plants. The functions are mediated via binding to GTPases which are in turn regulated by GTPase-activating proteins (GAPs). Satellite reports have suggested the positive roles of GAPs in regulating ABA signaling and pathogen resistance in plants. However, the molecular mechanisms that bring forth the pathogen resistance have remained unclear. In this study, we demonstrated that the expression of AtGAP1 was inducible by Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). The overexpression of AtGAP1 in Arabidopsis promoted the expression of PR1 and the resistance to Pst DC3000. Proteomic analyses revealed the enhanced accumulation of cell-wall-modifying proteins as a result of AtGAP1 overexpression. By microscopic analyses, we showed that the overexpression of AtGAP1 resulted in increased thickness of the mesophyll cell wall and reduced stomatal aperture, which are effective strategies for restricting the entry of foliar pathogens. Altogether, we demonstrated that AtGAP1 increases the resistance to Pst DC3000 in Arabidopsis by promoting cellular strategies that restrict the entry of pathogens into the cells. These results point to a future direction for studying the modes of action of GAPs in regulating plant cell structures and disease resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Ativadoras de GTPase , Pseudomonas syringae , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/fisiologia , Resistência à Doença/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Estômatos de Plantas/fisiologia , Proteômica , Pseudomonas syringae/fisiologia
6.
Front Plant Sci ; 13: 867731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432392

RESUMO

The omics approaches allow the scientific community to successfully identify genomic regions associated with traits of interest for marker-assisted breeding. Agronomic traits such as seed color, yield, growth habit, and stress tolerance have been the targets for soybean molecular breeding. Genes governing these traits often undergo post-transcriptional modifications, which should be taken into consideration when choosing elite genes for molecular breeding. Post-transcriptional regulations of genes include transcript regulations, protein modifications, and even the regulation of the translational machinery. Transcript regulations involve elements such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) for the maintenance of transcript stability or regulation of translation efficiency. Protein modifications involve molecular modifications of target proteins and the alterations of their interacting partners. Regulations of the translational machinery include those on translation factors and the ribosomal protein complex. Post-transcriptional regulations usually involve a set of genes instead of a single gene. Such a property may facilitate molecular breeding. In this review, we will discuss the post-transcriptional modifications of genes related to favorable agronomic traits such as stress tolerance, growth, and nutrient uptake, using examples from soybean as well as other crops. The examples from other crops may guide the selection of genes for marker-assisted breeding in soybean.

7.
Membranes (Basel) ; 12(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35207127

RESUMO

Multidrug and toxic compound extrusion (MATE) transporters in eukaryotes have been characterized to be antiporters that mediate the transport of substrates in exchange for protons. In plants, alkaloids, phytohormones, ion chelators, and flavonoids have been reported to be the substrates of MATE transporters. Structural analyses have been conducted to dissect the functional significance of various motifs of MATE proteins. However, an understanding of the functions of the N- and C-termini has been inadequate. Here, by performing phylogenetic analyses and protein sequence alignment of 14 representative plant species, we identified a distinctive N-terminal poly-glutamate motif among a cluster of MATE proteins in soybean. Amongst them, GmMATE4 has the most consecutive glutamate residues at the N-terminus. A subcellular localization study showed that GmMATE4 was localized at the vacuolar membrane-like structure. Protein charge prediction showed that the mutation of the glutamate residues to alanine would reduce the negative charge at the N-terminus. Using yeast as the model, we showed that GmMATE4 mediated the transport of daidzein, genistein, glycitein, and glycitin. In addition, the glutamate-to-alanine mutation reduced the isoflavone transport capacity of GmMATE4. Altogether, we demonstrated GmMATE4 as an isoflavone transporter and the functional significance of the N-terminal poly-glutamate motif of GmMATE4 for regulating the isoflavone transport activity.

8.
BMC Genomics ; 23(1): 65, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057741

RESUMO

BACKGROUND: Soybean is a major legume crop with high nutritional and environmental values suitable for sustainable agriculture. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are important regulators of gene functions in eukaryotes. However, the interactions between these two types of ncRNAs in the context of plant physiology, especially in response to salinity stress, are poorly understood. RESULTS: Here, we challenged a cultivated soybean accession (C08) and a wild one (W05) with salt treatment and obtained their small RNA transcriptomes at six time points from both root and leaf tissues. In addition to thoroughly analyzing the differentially expressed miRNAs, we also documented the first case of miRNA arm-switching (miR166m), the swapping of dominant miRNA arm expression, in soybean in different tissues. Two arms of miR166m target different genes related to salinity stress (chloroplastic beta-amylase 1 targeted by miR166m-5p and calcium-dependent protein kinase 1 targeted by miR166m-3p), suggesting arm-switching of miR166m play roles in soybean in response to salinity stress. Furthermore, two pairs of miRNA:lncRNA interacting partners (miR166i-5p and lncRNA Gmax_MSTRG.35921.1; and miR394a-3p and lncRNA Gmax_MSTRG.18616.1) were also discovered in reaction to salinity stress. CONCLUSIONS: This study demonstrates how ncRNA involves in salinity stress responses in soybean by miRNA arm switching and miRNA:lncRNA interactions. The behaviors of ncRNAs revealed in this study will shed new light on molecular regulatory mechanisms of stress responses in plants, and hence provide potential new strategies for crop improvement.


Assuntos
Glycine max , MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , Estresse Salino , Glycine max/genética , Transcriptoma
9.
Int J Mol Sci ; 21(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291499

RESUMO

Soybean is an important crop as both human food and animal feed. However, the yield of soybean is heavily impacted by biotic stresses including insect attack and pathogen infection. Insect bites usually make the plants vulnerable to pathogen infection, which causes diseases. Fungi, oomycetes, bacteria, viruses, and nematodes are major soybean pathogens. The infection by pathogens and the defenses mounted by soybean are an interactive and dynamic process. Using fungi, oomycetes, and bacteria as examples, we will discuss the recognition of pathogens by soybean at the molecular level. In this review, we will discuss both the secretory peptides for soybean plant infection and those for pathogen inhibition. Pathogenic secretory peptides and peptides secreted by soybean and its associated microbes will be included. We will also explore the possible use of externally applied antimicrobial peptides identical to those secreted by soybean and its associated microbes as biopesticides.


Assuntos
Produtos Biológicos/farmacologia , Interações Hospedeiro-Patógeno , Peptídeos/farmacologia , Monofosfato de Adenosina/biossíntese , Animais , Antibiose , Bactérias , Agentes de Controle Biológico/química , Agentes de Controle Biológico/farmacologia , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Resistência à Doença , Endófitos , Fungos/fisiologia , Humanos , Imunidade Inata , Oomicetos , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Processamento de Proteína Pós-Traducional , Glycine max/química , Glycine max/imunologia , Virulência , Vírus
10.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233855

RESUMO

A class of proteins that were discovered to bind the immunosuppressant drug FK506, called FK506-binding proteins (FKBPs), are members of a sub-family of immunophilins. Although they were first identified in human, FKBPs exist in all three domains of life. In this report, a rice FKBP12 homolog was first identified as a biotic stress-related gene through suppression subtractive hybridization screening. By ectopically expressing OsFKBP12 in the heterologous model plant system, Arabidopsis thaliana, for functional characterization, OsFKBP12 was found to increase susceptibility of the plant to the pathogen, Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). This negative regulatory role of FKBP12 in biotic stress responses was also demonstrated in the AtFKBP12-knockout mutant, which exhibited higher resistance towards Pst DC3000. Furthermore, this higher-plant FKBP12 homolog was also shown to be a negative regulator of salt tolerance. Using yeast two-hybrid tests, an ancient unconventional G-protein, OsYchF1, was identified as an interacting partner of OsFKBP12. OsYchF1 was previously reported as a negative regulator of both biotic and abiotic stresses. Therefore, OsFKBP12 probably also plays negative regulatory roles at the convergence of biotic and abiotic stress response pathways in higher plants.


Assuntos
Oryza/genética , Proteínas de Plantas/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Oryza/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/microbiologia , Pseudomonas syringae/patogenicidade , Tolerância ao Sal/genética , Serina-Treonina Quinases TOR/genética , Técnicas do Sistema de Duplo-Híbrido
11.
Biochem J ; 477(20): 3935-3949, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32955089

RESUMO

The unconventional G-protein OsYchF1 plays regulatory roles in plant defense and abiotic stress responses. We have previously resolved the crystal structures of OsYchF1 and its plant-specific regulator, OsGAP1, and determined the residues on OsGAP1 that are essential for its binding to OsYchF1. In this study, we employed site-directed mutagenesis to identify four critical residues on the TGS domain of OsYchF1 that are critical for its binding to OsGAP1. We also generated a docking model of the OsYchF1 : OsGAP1 complex to dissect the molecular basis of their interactions. Our finding not only reveals the roles of the key interacting residues controlling the binding between OsYchF1 and OsGAP1, but also provides a working model on the potential regulatory mechanism mediated by a TGS domain, particularly in the class of GTPase of the OBG family.


Assuntos
Arabidopsis/metabolismo , Domínios C2/genética , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/química , Oryza/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Modelos Estruturais , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Domínios Proteicos/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes , Estresse Fisiológico/genética
12.
J Exp Bot ; 71(10): 2970-2981, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32061092

RESUMO

Transcription factors (TFs) help plants respond to environmental stresses by regulating gene expression. Up till now, studies on the MYB family of TFs have mainly focused on the highly abundant R2R3-subtype. While the less well-known 1R-subtype has been generally shown to enhance abscisic acid (ABA) sensitivity by acting as transcriptional activators, the mechanisms of their functions are unclear. Here we identified an ABA sensitivity-associated gene from soybean, ABA-Sensitive 1 (GmABAS1), of the 1R-subtype of MYB. Using the GFP-GmABAS1 fusion protein, we demonstrated that GmABAS1 is localized in the nucleus, and with yeast reporter systems, we showed that it is a transcriptional repressor. We then identified the target gene of GmABAS1 to be Glyma.01G060300, an annotated ABI five-binding protein 3 and showed that GmABAS1 binds to the promoter of Glyma.01G060300 both in vitro and in vivo. Furthermore, Glyma.01G060300 and GmABAS1 exhibited reciprocal expression patterns under osmotic stress, inferring that GmABAS1 is a transcriptional repressor of Glyma.01G060300. As a further confirmation, AtAFP2, an orthologue of Glyma.01G060300, was down-regulated in GmABAS1-transgenic Arabidopsis thaliana, enhancing the plant's sensitivity to ABA. This is the first time a 1R-subtype of MYB from soybean has been reported to enhance ABA sensitivity by acting as a transcriptional repressor.


Assuntos
Ácido Abscísico , Glycine max , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Int J Mol Sci ; 19(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336563

RESUMO

In the natural environment, plants are often bombarded by a combination of abiotic (such as drought, salt, heat or cold) and biotic (necrotrophic and biotrophic pathogens) stresses simultaneously. It is critical to understand how the various response pathways to these stresses interact with one another within the plants, and where the points of crosstalk occur which switch the responses from one pathway to another. Calcium sensors are often regarded as the first line of response to external stimuli to trigger downstream signaling. Abscisic acid (ABA) is a major phytohormone regulating stress responses, and it interacts with the jasmonic acid (JA) and salicylic acid (SA) signaling pathways to channel resources into mitigating the effects of abiotic stresses versus defending against pathogens. The signal transduction in these pathways are often carried out via GTP-binding proteins (G-proteins) which comprise of a large group of proteins that are varied in structures and functions. Deciphering the combined actions of these different signaling pathways in plants would greatly enhance the ability of breeders to develop food crops that can thrive in deteriorating environmental conditions under climate change, and that can maintain or even increase crop yield.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Plantas/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(10): 2648-53, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26912459

RESUMO

G proteins are involved in almost all aspects of the cellular regulatory pathways through their ability to bind and hydrolyze GTP. The YchF subfamily, interestingly, possesses the unique ability to bind both ATP and GTP, and is possibly an ancestral form of G proteins based on phylogenetic studies and is present in all kingdoms of life. However, the biological significance of such a relaxed ligand specificity has long eluded researchers. Here, we have elucidated the different conformational changes caused by the binding of a YchF homolog in rice (OsYchF1) to ATP versus GTP by X-ray crystallography. Furthermore, by comparing the 3D relationships of the ligand position and the various amino acid residues at the binding sites in the crystal structures of the apo-bound and ligand-bound versions, a mechanism for the protein's ability to bind both ligands is revealed. Mutation of the noncanonical G4 motif of the OsYchF1 to the canonical sequence for GTP specificity precludes the binding/hydrolysis of ATP and prevents OsYchF1 from functioning as a negative regulator of plant-defense responses, while retaining its ability to bind/hydrolyze GTP and its function as a negative regulator of abiotic stress responses, demonstrating the specific role of ATP-binding/hydrolysis in disease resistance. This discovery will have a significant impact on our understanding of the structure-function relationships of the YchF subfamily of G proteins in all kingdoms of life.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Ligação ao GTP/química , Nucleosídeo-Trifosfatase/química , Proteínas de Plantas/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Cristalografia por Raios X , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Nucleosídeo-Trifosfatase/genética , Nucleosídeo-Trifosfatase/metabolismo , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Pseudomonas syringae/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia
15.
J Biol Chem ; 290(39): 23984-96, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26286751

RESUMO

The C2 domain is one of the most diverse phospholipid-binding domains mediating cellular signaling. One group of C2-domain proteins are plant-specific and are characterized by their small sizes and simple structures. We have previously reported that a member of this group, OsGAP1, is able to alleviate salt stress and stimulate defense responses, and bind to both phospholipids and an unconventional G-protein, OsYchF1. Here we solved the crystal structure of OsGAP1 to a resolution of 1.63 Å. Using site-directed mutagenesis, we successfully differentiated between the clusters of surface residues that are required for binding to phospholipids versus OsYchF1, which, in turn, is critical for its role in stimulating defense responses. On the other hand, the ability to alleviate salt stress by OsGAP1 is dependent only on its ability to bind OsYchF1 and is independent of its phospholipid-binding activity.


Assuntos
Mutagênese Sítio-Dirigida , Oryza/enzimologia , Fosfolipídeos/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Ativadoras de ras GTPase/química , Proteínas Ativadoras de ras GTPase/metabolismo , Cristalografia por Raios X , Oryza/genética , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Proteínas Ativadoras de ras GTPase/genética
16.
Plant Cell Environ ; 36(11): 2008-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23550829

RESUMO

YchF proteins are a group of mysterious but ubiquitous unconventional G-proteins found in all kingdoms of life except Archaea. Their functions have been documented in microorganisms, protozoa and human, but those of plant YchF homologues are largely unknown. Our group has previously shown that OsYchF1 and its interacting protein, OsGAP1, play opposite roles in plant defense responses. OsGAP1 was found to stimulate the GTPase/ATPase activities of OsYchF1 and regulate its subcellular localization. In this report, we demonstrate that both OsYchF1 and OsGAP1 are localized mainly in the cytosol under NaCl treatment. The ectopic expression of OsYchF1 in transgenic Arabidopsis thaliana leads to reduced tolerance towards salinity stress, while the ectopic expression of OsGAP1 has the opposite effect. Similar results were also obtained with the Arabidopsis homologues, AtYchF1 and AtGAP1, by using AtGAP1 overexpressors and underexpressors, as well as an AtYchF1-knockdown mutant. OsYchF1 and OsGAP1 also exhibit highly significant effects on salinity-induced oxidative stress tolerance. The expression of OsYchF1 suppresses the anti-oxidation enzymatic activities and increases lipid peroxidation in transgenic Arabidopsis, and leads to the accumulation of reactive oxygen species (ROS) in tobacco BY-2 cells, while the ectopic expression of OsGAP1 has the opposite effects in these two model systems.


Assuntos
Nucleosídeo-Trifosfatase/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Salinidade , Tolerância ao Sal , Estresse Fisiológico , Antioxidantes/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/ultraestrutura , Citosol/efeitos dos fármacos , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Humanos , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/ultraestrutura , Oxirredução/efeitos dos fármacos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo
17.
Plant Cell Environ ; 35(11): 1932-47, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22548236

RESUMO

The BURP-domain protein family comprises a diverse group of plant-specific proteins that share a conserved BURP domain at the C terminus. However, there have been only limited studies on the functions and subcellular localization of these proteins. Members of the RD22-like subfamily are postulated to associate with stress responses due to the stress-inducible nature of some RD22-like genes. In this report, we used different transgenic systems (cells and in planta) to show that the expression of a stress-inducible RD22-like protein from soybean (GmRD22) can alleviate salinity and osmotic stress. We also performed detailed microscopic studies using both fusion proteins and immuno-electron microscopic techniques to demonstrate the apoplast localization of GmRD22, for which the BURP domain is a critical determinant of the subcellular localization. The apoplastic GmRD22 interacts with a cell wall peroxidase and the ectopic expression of GmRD22 in both transgenic Arabidopsis thaliana and transgenic rice resulted in increased lignin production when subjected to salinity stress. It is possible that GmRD22 regulates cell wall peroxidases and hence strengthens cell wall integrity under such stress conditions.


Assuntos
Glycine max/genética , Proteínas de Plantas/fisiologia , Estresse Fisiológico , Motivos de Aminoácidos , Arabidopsis/genética , Clonagem Molecular , Oryza/genética , Pressão Osmótica , Peroxidase/metabolismo , Filogenia , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Glycine max/metabolismo , Glycine max/fisiologia , Nicotiana/genética
18.
J Biol Chem ; 285(48): 37359-69, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20876569

RESUMO

YchF is a subfamily of the Obg family in the TRAFAC class of P-loop GTPases. The wide distribution of YchF homologues in both eukarya and bacteria suggests that they are descendents of an ancient protein, yet their physiological roles remain unclear. Using the OsYchF1-OsGAP1 pair from rice as the prototype, we provide evidence for the regulation of GTPase/ATPase activities and RNA binding capacity of a plant YchF (OsYchF1) by its regulatory protein (OsGAP1). The effects of OsGAP1 on the subcellular localization/cycling and physiological functions of OsYchF1 are also discussed. The finding that OsYchF1 and OsGAP1 are involved in plant defense response might shed light on the functional roles of YchF homologues in plants. This work suggests that during evolution, an ancestral P-loop GTPase/ATPase may acquire new regulation and function(s) by the evolution of a lineage-specific regulatory protein.


Assuntos
Evolução Molecular , GTP Fosfo-Hidrolases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Regulação Enzimológica da Expressão Gênica , Oryza/enzimologia , Proteínas de Plantas/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Oryza/química , Oryza/classificação , Oryza/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade da Espécie
19.
BMC Plant Biol ; 10: 290, 2010 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-21192820

RESUMO

BACKGROUND: In plants, HIR (Hypersensitive Induced Reaction) proteins, members of the PID (Proliferation, Ion and Death) superfamily, have been shown to play a part in the development of spontaneous hypersensitive response lesions in leaves, in reaction to pathogen attacks. The levels of HIR proteins were shown to correlate with localized host cell deaths and defense responses in maize and barley. However, not much was known about the HIR proteins in rice. Since rice is an important cereal crop consumed by more than 50% of the populations in Asia and Africa, it is crucial to understand the mechanisms of disease responses in this plant. We previously identified the rice HIR1 (OsHIR1) as an interacting partner of the OsLRR1 (rice Leucine-Rich Repeat protein 1). Here we show that OsHIR1 triggers hypersensitive cell death and its localization to the plasma membrane is enhanced by OsLRR1. RESULT: Through electron microscopy studies using wild type rice plants, OsHIR1 was found to mainly localize to the plasma membrane, with a minor portion localized to the tonoplast. Moreover, the plasma membrane localization of OsHIR1 was enhanced in transgenic rice plants overexpressing its interacting protein partner, OsLRR1. Co-localization of OsHIR1 and OsLRR1 to the plasma membrane was confirmed by double-labeling electron microscopy. Pathogen inoculation studies using transgenic Arabidopsis thaliana expressing either OsHIR1 or OsLRR1 showed that both transgenic lines exhibited increased resistance toward the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. However, OsHIR1 transgenic plants produced more extensive spontaneous hypersensitive response lesions and contained lower titers of the invading pathogen, when compared to OsLRR1 transgenic plants. CONCLUSION: The OsHIR1 protein is mainly localized to the plasma membrane, and its subcellular localization in that compartment is enhanced by OsLRR1. The expression of OsHIR1 may sensitize the plant so that it is more prone to HR and hence can react more promptly to limit the invading pathogens' spread from the infection sites.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/genética , Oryza/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Western Blotting , Membrana Celular/ultraestrutura , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Proteínas de Repetições Ricas em Leucina , Proteínas de Membrana/metabolismo , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Oryza/metabolismo , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo , Pseudomonas syringae/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Xanthomonas/fisiologia
20.
Plant Cell Environ ; 32(12): 1804-20, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19712067

RESUMO

Receptor-like protein kinases (RLKs) containing an extracellular leucine-rich repeat (eLRR) domain, a transmembrane domain and a cytoplasmic kinase domain play important roles in plant disease resistance. Simple eLRR domain proteins structurally resembling the extracellular portion of the RLKs may also participate in signalling transduction and plant defence response. Yet the molecular mechanisms and subcellular localization in regulating plant disease resistance of these simple eLRR domain proteins are still largely unclear. We provided the first experimental evidence to demonstrate the subcellular localization and trafficking of a novel simple eLRR domain protein (OsLRR1) in the endosomal pathway, using both confocal and electron microscopy. Yeast two-hybrid and in vitro pull-down assays show that OsLRR1 interacts with the rice hypersensitive-induced response protein 1 (OsHIR1) which is localized on plasma membrane. The interaction between LRR1 and HIR1 homologs was shown to be highly conserved among different plant species, suggesting a close functional relationship between the two proteins. The function of OsLRR1 in plant defence response was examined by gain-of-function tests using transgenic Arabidopsis thaliana. The protective effects of OsLRR1 against bacterial pathogen infection were shown by the alleviating of disease symptoms, lowering of pathogen titres and higher expression of defence marker genes.


Assuntos
Endossomos/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Imunidade Inata , Proteínas de Repetições Ricas em Leucina , Microscopia Confocal , Microscopia Eletrônica , Dados de Sequência Molecular , Oryza/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Mapeamento de Interação de Proteínas , Proteínas/genética , Pseudomonas syringae , RNA de Plantas/genética , Alinhamento de Sequência , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA